Descriptive Statistics
Version Control
python
Git
Github
Warning
đ§ Work in Progress!
Hey! Iâm still working on this post. If youâre interested, keep an eye out for updates here â exciting stuff coming soon!!
Sandeep N
July 18, 2025
đ§ Work in Progress!
Hey! Iâm still working on this post. If youâre interested, keep an eye out for updates here â exciting stuff coming soon!!
---
title: "Descriptive Statistics"
author: "Sandeep N"
date: 2025-07-18
categories: [Version Control, python, Git, Github]
format:
html:
code-tools: true
embed-resources: true
jupyter: python3
---
[](https://twitter.com/intent/tweet?text=Check%20out%20this%20post!&url=https%3A%2F%2Fsandeepnarasimhan.github.io%2FNeural-Notes%2Fposts%2FVenvs.html)
[](https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fsandeepnarasimhan.github.io%2FNeural-Notes%2Fposts%2FVenvs.html)
[](mailto:?subject=Interesting%20Post&body=Check%20out%20this%20blog%20post%3A%20https%3A%2F%2Fsandeepnarasimhan.github.io%2FNeural-Notes%2Fposts%2FVenvs.html)
[](https://api.whatsapp.com/send?text=Check%20out%20this%20blog%20post%3A%20https%3A%2F%2Fsandeepnarasimhan.github.io%2FNeural-Notes%2Fposts%2FVenvs.html)
[](https://www.reddit.com/submit?url=https%3A%2F%2Fsandeepnarasimhan.github.io%2FNeural-Notes%2Fposts%2FVenvs.html&title=Virtual%20Environments)
::: {.callout-warning icon="đ ī¸" .bg-yellow-100 .border-yellow-500 .text-yellow-800}
**đ§ Work in Progress!**
**Hey! Iâm still working on this post. If youâre interested, keep an eye out for updates here â exciting stuff coming soon!!**
:::
```{python}
#|echo: False
import numpy as np
import plotly.graph_objects as go
x = np.linspace(-10, 10, 500)
mu_values = np.arange(-5, 5.5, 0.5)
sigma = 1
# Create traces
traces = []
for mu in mu_values:
y = 1/(sigma*np.sqrt(2*np.pi)) * np.exp(-(x - mu)**2 / (2*sigma**2))
traces.append(go.Scatter(x=x, y=y, name=f"Îŧ={mu}", visible=False))
traces[0].visible = True
steps = []
for i, mu in enumerate(mu_values):
step = dict(method="update",
args=[{"visible": [j == i for j in range(len(mu_values))]},
{"title": f"Normal Distribution Îŧ={mu}, Ī={sigma}"}],
label=str(mu))
steps.append(step)
sliders = [dict(active=0, pad={"t": 50}, steps=steps)]
layout = dict(title="Normal Distribution Slider",
sliders=sliders,
xaxis=dict(title="x"), yaxis=dict(title="Density"))
fig = go.Figure(data=traces, layout=layout)
fig.show()
```